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a b s t r a c t 

Deep matrix factorizations (deep MFs) are recent unsupervised data mining techniques inspired by con- 

strained low-rank approximations. They aim to extract complex hierarchies of features within high- 

dimensional datasets. Most of the loss functions proposed in the literature to evaluate the quality of 

deep MF models and the underlying optimization frameworks are not consistent because different losses 

are used at different layers. In this paper, we introduce two meaningful loss functions for deep MF and 

present a generic framework to solve the corresponding optimization problems. We illustrate the effec- 

tiveness of this approach through the integration of various constraints and regularizations, such as spar- 

sity, nonnegativity and minimum-volume. The models are successfully applied on both synthetic and real 

data, namely for hyperspectral unmixing and extraction of facial features. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the era of data science, the extraction of meaningful fea- 

ures in datasets is a crucial challenge. To do so, a fundamental 

lass of unsupervised linear dimensionality reduction methods is 

ow-rank matrix factorizations (LRMFs). Given a matrix X ∈ R 

m ×n , 

here each column is a data point in dimension m , and a factor-

zation rank r, an LRMF approximates X as the product of two ma- 

rices of smaller inner dimension r, W ∈ R 

m ×r and H ∈ R 

r×n , such

hat X ≈ W H. The columns of W , denoted W (: , k ) for k = 1 , . . . , r,

n dimension m , are called the basis vectors, and the entries of the

jth column of H, denoted H(: , j) for j = 1 , . . . , n , indicate in which

roportion each basis vector contributes to the corresponding data 

oint, since X(: , j) ≈ W H(: , j) . 

Without any constraints on the factors, W and H, such a decom- 

osition is highly non-unique. This has led researchers to use addi- 

ional constraints, motivated by prior knowledge, to obtain unique- 

ess and interpretability of the factors. Two of the most widely 

sed constraints are sparsity and nonnegativity. Such constrained 

RMFs have had tremendous success in a wide variety of applica- 

ions; see, e.g., [1–6] , and the references therein. 

Recently, surfing the wave of deep learning, LRMFs have been 

xtended such that the original matrix X is decomposed as the 

roduct of more than two factors, which is referred to as deep MF. 

ore precisely, L layers of decomposition are applied on the matrix 

such that X ≈ W L H L H L −1 . . . H 1 . This is equivalent to considering 
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 hierarchical decomposition of X as follows: 

X ≈ W 1 H 1 , 

W 1 ≈ W 2 H 2 , 

. . . 
 L −1 ≈ W L H L . 

(1) 

t each layer, W l ∈ R 

m ×r l and H l ∈ R 

r l ×r l−1 for l = 1 , . . . , L with r 0 =
 . The dimension r l of each layer is the rank of the factorization

t layer l. When the factorization is performed according to the 

cheme of (1) , the ranks are generally chosen in decreasing order, 

hat is r 1 ≥ r 2 ≥ · · · ≥ r L . This can be easily understood: the first 

evels of decomposition extract low-level features, closely related 

o data while the last ones consist in a few key high-level features. 

lso, increasing ranks would lead to trivial factorizations. In fact, 

f r l ≤ r l+1 for some l, W l = W l+1 H l+1 = (W l 0) 
(I r l 

0 

)
where 0 is the

atrix of zeros of appropriate dimension, would be a feasible fac- 

orization that does not bring any informative feature. 

Deep MFs have the power to decompose hierarchically an input 

ataset, with different levels of interpretation at each layer, and 

re currently used in many applications, such as hyperspectral un- 

ixing [7] , the extraction of facial features [8–10] , recommender 

ystems [11] , and multi-view clustering [12–14] among others. 

As for single-layer factorizations, additional constraints are typ- 

cally assumed on the factors W l ’s and H l ’s. Indeed, without any 

onstraint on the factors of deep MF, deep MFs degenerate into 

overparametrized) classical MFs: the product of the factors H l ’s 

ould be replaced by a single matrix whose rank is less than or 

qual to the minimum of the r l ’s. Hence, the LRMFs with con- 

traints, such as sparsity and nonnegativity, have been extended 

o a multilayer frawework; see [15,16] and the references therein 
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Table 1 

Loss functions minimized at each step of Algorithm 2 

for L = 3 . In bold, we indicate the matrix being up- 

dated. 

Layer l Update of H l Update of W l 

1 ‖ X − W 2 H 2 H 1 ‖ 2 F ‖ X − W 1 H 1 ‖ 2 F 

2 ‖ X − W 3 H 3 H 2 H 1 ‖ 2 F ‖ X − W 2 H 2 H 1 ‖ 2 F 

3 ‖ X − W 3 H 3 H 2 H 1 ‖ 2 F ‖ X − W 3 H 3 H 2 H 1 ‖ 2 F 
or details. Similar to deep MF, deep concept factorization [17] is 

n extension of archetypal analysis to several layers. 

A crucial question that has not been discussed thoroughly yet 

s the choice of the loss function used to assess the quality of the 

actorization. The loss functions proposed so far in the literature 

re not consistent because different losses are optimized at differ- 

nt layers; see the discussion in Section 2 for more details. There- 

ore, in this paper, we propose a general framework with appropri- 

te loss functions to solve efficiently deep MFs with general con- 

traints on the factors. Especially, in the numerical experiments, we 

llustrate the performance of our framework compared to the state 

f the art. 

The remainder of the paper is organized as follows. In Section 2 , 

e describe the motivations behind our work regarding the state 

f the art. Then, in Section 3 , we propose two new loss functions

nd discuss why they are more meaningful and consistent com- 

ared to previous works. Based on these new loss functions, we 

resent in Section 4 a generic optimization framework relying on 

n extrapolated projected gradient method in order to tackle deep 

Fs with various constraints and regularizations. In Section 5.1 , we 

resent results on synthetic data, and in Section 5.2 , we compare 

he models on real hyperspectral and facial images, before con- 

luding in Section 6 . 

. State of the art and motivations of the work 

The first factorization model with several layers was proposed 

y Cichocki et al. [8] , and is usually dubbed “multilayer matrix 

actorization”. It aims at minimizing ‖ W l−1 − W l H l ‖ 2 F 
, with W 0 = X

uccessively for each layer l = 1 , . . . , L . In other words, each factor-

zation of (1) is performed one at a time, from the first to the last

evel, and the model is merely a succession of standard one-layer 

Fs. This hierarchical decomposition is sketched in Algorithm 1 , in 

hich W l and H l denote the feasible sets respectively for the fac- 

ors W l ’s and H l ’s, l = 1 , . . . , L , regardless of the specific constraints

hat apply (e.g., nonnegativity or sparsity). For each layer, a classi- 

al two block coordinate descent (BCD) is performed. It updates W l 

nd H l alternatively until some stopping criterion, such as a max- 

mum number of iterations or an insufficient decrease of the loss 

unction between two consecutive iterations, is reached. Then, the 

lgorithm moves to the next layer, which is in turn factorized and 

o on until the last layer ( l = L ). At lines and , arg reduce denotes

ny algorithm that leads to a decrease of the corresponding loss 

unction with the constraints enforced on H l ’s and W l ’s. 

lgorithm 1 Multilayer matrix factorization [18] . 

nput: Nonnegative data matrix X, number of layers L , inner ranks 

r l ’s and feasible sets W l and H l for l = 1 , . . . , L . 

utput: Matrices W 1 , . . . , W L and H 1 , . . . , H L . 

1: W 0 = X

2: for l = 1 , . . . , L do 

3: Initialize W 

(0) 
l 

and H 

(0) 
l 

4: for k = 1 , . . . do 

5: H 

(k ) 
l 

= arg reduce 
H∈H l 

‖ W l−1 − W 

(k −1) 
l 

H‖ 2 
F 

6: W 

(k ) 
l 

= arg reduce 
W ∈W l 

‖ W l−1 − W H 

(k ) 
l 

‖ 2 
F 

7: end for 

8: end for 

A pitfall of the approach of Cichocki et al. is that the factors 

f the last layers do not have any influence on those of the first 

nes since the first layers are factorized before the last ones. To 

emedy this, an iterative procedure was suggested by Trigeorgis 

t al. [19] , called “deep MF”. The initialization of the factors is per-

ormed through Algorithm 1 and is followed by iterative updates 
2 
ntil some stopping criterion is met, as described in Algorithm 2 . 

ore precisely, once all the factors W l ’s and H l ’s have been up- 

ated once through sequential factorizations as in multilayer MF, 

everal rounds of updates (starting with the first layer) are per- 

ormed, taking into account the previous updates of the factors of 

he other layers. For this purpose, a global loss function was pro- 

osed by Trigeorgis et al. [19 , Equation (10)], namely 

lgorithm 2 Deep MF with general constraints [19] . 

nput: Data matrix X, number of layers L , inner ranks r l ’s, 

feasible sets W l and H l for l = 1 , . . . , L 

utput: Matrices W 1 , . . . , W L and H 1 , . . . , H L 

1: Compute initial matrices W 

(0) 
l 

and H 

(0) 
l 

for all l through a se- 

quential decomposition of X (for example Algorithm1) 

2: for k = 1 , . . . do 

3: for l = 1 , . . . , L do 

4: A 

(k ) 
l 

= 

{
W 

(k −1) 
L 

if l = L 

W 

(k −1) 
l+1 

H 

(k −1) 
l+1 

otherwise 

5: B (k ) 
l 

= H 

(k −1) 
l−1 

. . . H 

(k −1) 
1 

6: H 

(k ) 
l 

= arg reduce 
H∈H l 

‖ X − A 

(k ) 
l 

HB (k ) 
l 

‖ 2 
F 

7: W 

(k ) 
l 

= arg reduce 
W ∈W l 

‖ X − W H 

(k ) 
l 

B (k ) 
l 

‖ 2 
F 

8: end for 

9: end for 

 0 (H 1 , H 2 , . . . , H L ;W L ) = ‖ X − W L H L . . . H 2 H 1 ‖ 

2 
F . (2)

t is the squared Frobenius norm of the difference between the 

riginal matrix X and the approximation obtained by unfolding the 

 layers of (1) . This loss function (2) was reused by most of the pa-

ers in the deep MF literature. 

To understand more clearly how Algorithm 2 works, let us con- 

ider the simple case where L = 3 . In Table 1 , we report the loss

unction minimized at each stage of Algorithm 2 , regarding the up- 

ates of lines and with the updated factor in bold, the others 

eing fixed. 

Table 1 shows that Algorithm 2 minimizes three different loss 

unctions depending on which factor matrix is updated. More 

recisely, only the updates of the last layer ( l = 3 ) and the

ne of H 2 are performed according to the ”global” loss func- 

ion claimed in (2) . For L > 3 , the situation is even worse, hence

lgorithm 2 does not appear to be coherent since different loss 

unctions are minimized along the factors updates. Consequently, 

onvergence guarantees on this global loss function cannot be de- 

ived from such an optimization framework; see Fig. 10 and 11 in 

ection 5.2.2 that shows that Algorithm 2 does not converge on a 

umerical example. 

Note that one cannot simply minimize L 0 in (2) at every layer 

o compute (W L , H L , . . . , H 1 ) . In fact, assuming the ranks are de-

reasing, that is, r l+1 ≤ r l for all l (this is the most reasonable set- 

ing; see Section 1 ), any solution (H 1 , . . . , H L ;W L ) can be trans-

ormed into a degenerate solution (H 

(∗) 
1 

, . . . , H 

(∗) 
L 

;W 

(∗) 
L 

) with the 
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ame loss function, and with the following form 

 

(∗) 
l 

= 

(
I r L 0 r L ×(r l−1 −r L ) 

0 (r l −r L ) ×r L 0 (r l −r L ) ×(r l−1 −r L ) 

)
for l = 2 , . . . , L, 

here I r l is the identity matrix of dimension r l , and 0 m ×n is the

 -by- n zero matrix, H 

(∗) 
1 

= H L . . . H 1 and W 

(∗) 
L 

= W L . The reason is

hat W L H L . . . H 1 has rank at most min l r l = r L , and with the choice

bove, we have 

 

(∗) 
1 

= W 

(∗) 
L 

H 

(∗) 
L 

. . . H 

(∗) 
2 

= [ W L 0 m ×(r 1 −r L ) ] ∈ R 

m ×r 1 

uch that rank (W 

(∗) 
1 

) ≤ r L . This means that deep MF would sim- 

ly reduce to an overparametrized LRMF [20] . Therefore, deep MFs 

odels need to properly balance the importance of each layer to 

ompute useful hierarchical decompositions. 

Most of the recent works only rely on the loss given by (2) and

ollow Algorithm 2 . However, for the reasons mentioned above, 

his loss function and the use of Algorithm 2 are not consistent 

cross layers, but this has not been much discussed in the litera- 

ure yet. Besides, we show in Section 5 that this framework is not 

ble to retrieve the ground truth basis vectors in practice. In fact, 

he loss function (2) only minimizes the error at the last layer of 

actorization but does not control the accuracy of the factorizations 

f the previous layers, which yet may be crucial regarding the ap- 

lications of deep MF. 

To alleviate this, we propose in Section 3 two new loss func- 

ions that are consistent, that is, are guaranteed to diminish after 

ach update and reflect the balance between the errors due to each 

ayer of decomposition. 

. Consistent loss functions for deep MFs 

As explained in the previous section, the framework proposed 

y Trigeorgis et al. [19] is inconsistent. In this section, we propose 

wo global loss functions that can be used to optimize any of the 

actors in deep MF. Hence, it is straightforward to derive meaning- 

ul update rules that ensure the decrease of the global loss func- 

ion after the update of any factor. 

.1. Layer-centric loss function 

The first loss function proposed consists of a weighted sum of 

he errors caused by each layer of decomposition, that is, by the 

ayer-wise factorizations: 

 1 (H 1 , H 2 , . . . , H L ;W 1 , W 2 , . . . , W L ) = 

1 

2 

(
‖ X − W 1 H 1 ‖ 

2 
F 

+ λ1 ‖ W 1 − W 2 H 2 ‖ 

2 
F + · · · + λL −1 ‖ W L −1 − W L H L ‖ 

2 
F 

)
. (3)

his loss function is quite intuitive, with each term correspond- 

ng to a layer-wise error as the factorizations unfold. In fact, this 

an be seen as a globalization of the model of Cichocki et al. [18] :

nstead of trying to minimize the errors of each layer-wise fac- 

orization sequentially, all of them are aggregated within a global 

eighted loss function. 

As l increases and the ranks decrease (recall r l < r l−1 for all 

), the computational cost to evaluate each term in (3) decreases. 

ore precisely, the l-th term requires mr l r l−1 elementary opera- 

ions to be computed hence the computational cost of evaluat- 

ng (3) is O(Lmnr 1 ) . The loss of the first layer, which corresponds

o a standard factorization of the input matrix, is the most expen- 

ive to compute. 

.2. Data-centric loss function 

The second loss function considers the errors between X and its 

uccessive approximations of ranks r l ’s: 

s

3

 2 (H 1 , H 2 , . . . , H L ;W 1 , W 2 , . . . , W L ) = 

1 

2 

(
‖ X − W 1 H 1 ‖ 

2 
F 

+ μ1 ‖ X − W 2 H 2 H 1 ‖ 

2 
F + · · · + μL −1 ‖ X − W L H L . . . H 2 H 1 ‖ 

2 
F 

)
. (4)

While the loss function described in Section 3.1 focuses on 

ayer-wise errors, this one is data-centric in the sense that it eval- 

ates the errors between the data matrix X and its successive low- 

ank approximations. An advantage of this loss function is that the 

arameters μl ’s ( l = 1 , . . . , L − 1 ) are easier to tune since all the

erms are likely to have a similar order of magnitude. However, 

ince the successive approximations involve an increasing number 

f matrix multiplications, this loss function and the associated up- 

ate rules are slightly more computationally expensive. Indeed, the 

ost computationally costly term is the last one, which requires 

 (mr L + r L r L −1 + · · · + r 2 r 1 ) operations to be computed, which may

ecome high if the number of layers is high and the ranks do not 

ecrease rapidly. 

. General algorithmic framework 

A general algorithm to minimize the two proposed loss func- 

ions (3) and (4) under general constraints on W l ’s and H l ’s is given

n Algorithm 3 . We denote W → l the set of matrices { W 1 , . . . , W l−1 }
or any l = 1 , . . . , L and W l→ 

the set of matrices { W l+1 , . . . , W L }, and

imilarly for the H l ’s. 

lgorithm 3 Framework to solve deep MF with general constraints 

nd consistent global loss function. 

nput: Data matrix X, number of layers L , inner ranks r l ’s, 

feasible sets W l and H l for l = 1 , . . . , L , a global loss function L
such as L 1 in (3) or L 2 in (4) 

utput: Matrices W 1 , . . . , W L and H 1 , . . . , H L 

1: Compute initial matrices W 

(0) 
l 

and H 

(0) 
l 

for all l through a se- 

quential decomposition of X (for example Algorithm 1) 

2: for k = 1 , . . . do 

3: for l = 1 , . . . , L do 

4: H 

(k ) 
l 

= arg reduce 
H∈H l 

L 

(
W 

(k ) 
→ l 

, W 

(k −1) 
l 

, W 

(k −1) 
l→ 

; H 

(k ) 
→ l 

, H, H 

(k −1) 
l→ 

)
5: W 

(k ) 
l 

= arg reduce 
W ∈W l 

L 

(
W 

(k ) 
→ l 

, W , W 

(k −1) 
l→ 

; H 

(k ) 
→ l 

, H 

(k ) 
l 

, H 

(k −1) 
l→ 

)
6: end for 

7: end for 

Algorithm 3 consists in BCD over the factors of each layer. 

he subproblems in one factor matrix (in bold at lines and ) 

an be solved by various well-known techniques. In particular, 

hen the feasible set is convex, these subproblems are convex. 

oreover, many standard optimization schemes can be applied 

o such formulations and directly provide convergence guaran- 

ees to stationary points, e.g., the proximal alternating linearized 

inimization (PALM) [21] and the block successive minimization 

BSUM) [22] optimization schemes. This general framework is also 

ery flexible and we present some examples below, considering 

sual constraints on the factors of each layer, which will be illus- 

rated in the experiments of Sections 5.1 and 5.2 . 

One possibility to implement the updates of the factor matri- 

es in Algorithm 3 , that is, to solve the arg reduce subproblems at 

ines and , is a fast projected gradient method (FPGM), which is 

he one considered in the remainder of this paper. This method 

s easy to implement and scales relatively well (linearly with the 

ize of the data). The FPGM is a well-known first-order optimiza- 

ion framework to update a general matrix M which can be any 

f the W l ’s or H l ’s, l = 1 , . . . , L , see Algorithm. As each subproblem

s convex, we choose 1 
L as the step size, with L the Lipschitz con- 

tant, except for the update of H ’s for the second loss function 
l 
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 2 . Indeed, in this case, the Lipschitz constant is quite costly to 

ompute, as the derivatives are obtained by a sum over the layers 

see (8) ) hence, we simply compute the stepsize through a back- 

racking line search. The extrapolation step is based on Nesterov 

cceleration [23] and a restart guarantees the decrease of the loss 

unction. In other words, if the error increases, the extrapolation 

tep is not taken, as in [24] . Moreover, such an algorithm is guar-

nteed to converge to stationary points of the corresponding op- 

imization problem, under suitable assumptions (in particular, the 

onvexity of the subproblems in each factor matrix, which is our 

ase here as long at L is block-wise convex, and the feasible set is

onvex) [25,26] . 

lgorithm 4 Restarted fast projected gradient method (FPGM). 

nput: Initial matrix M 

(0) , feasible set M , loss function f (M) , pa- 

rameter α1 ∈ (0 , 1) 

utput: A matrix M that decreases f , that is, f (M) < f (M 

(0) ) 

1: Compute Lipschitz constant L of f ; Y = M 

(0) 

2: for k = 1 , . . . do 

3: M 

(k ) = P M 

(
Y − 1 

L ∇ f (Y ) 
)

4: Y = M 

(k ) + βk 

(
M 

(k ) − M 

(k −1) 
)

with βk = 

αk (1 −αk ) 

α2 
k 
+ αk +1 

and αk +1 = 

1 
2 

(√ 

α4 
k 

+ 4 α2 
k 

− α2 
k 

)
5: if f 

(
M 

(k ) 
)

> f 
(
M 

(k −1) 
)

then 

6: Y = M 

(k −1) , αk +1 = α1 % Restart 

7: end if 

8: end for 

Let us compute the gradients with respect to W l ’s and H l ’s ( l =
 , . . . , L ) of the loss functions (3) and (4) , by introducing W 0 = X ,

0 = μ0 = 1 . For L 1 , we have: 

∂ L 1 

∂ W l 

= λl−1 (W l H l − W l−1 ) H 

T 
l + δl λl (W l − W l+1 H l+1 ) (5) 

here δl = 0 if l = L and 1 otherwise, 

∂ L 1 

∂ H l 

= λl−1 W 

T 
l (W l H l − W l−1 ) . (6) 

or L 2 , let us call for all l, D l = H l−1 . . . H 1 , ˜ H l = H l . . . H 1 = H l D l and

 

(k ) 
l 

= W k H k . . . H l+1 for all k ≥ l (for k = l, C (l) 
l 

= W l ). Then, the gra-

ients are given by: 

∂ L 2 

∂ W l 

= μl−1 (W l ̃
 H l − X ) ̃  H 

T 
l , (7) 

∂ L 2 

∂ H l 

= 

L ∑ 

k = l 
μk −1 C 

(k ) 
T 

l 
(C (k ) 

l 
H l D l − X ) D 

T 
l . (8) 

We now implement this FPGM-based framework for various 

eep MF’s models that include constraints on the factors, such as 

on-negativity in Section 4.1 and sparsity in Section 4.2 , or add a 

egularization term to the loss function, such as a volume penal- 

zation in Section 4.3 . 

.1. Nonnegative deep MF 

In deep nonnegative MF (deep NMF), the factors of the de- 

omposition (1) are constrained to be nonnegative, that is, W l ≥ 0 , 

 l ≥ 0 for all l = 1 , . . . , L . The projection operator P at line of Algo-

ithm simply consists of the projection on the nonnegative orthant, 

hat is, P(A ) = max (A, 0) . 

Other constraints could be easily incorporated, as long as the 

rojection onto the feasible set can be computed efficiently. For 

xample, a very common additional constraint consists in enforc- 

ng the entries of every column of the H ’s to sum to 1, that is
l 

4 
 H l (: , j) ‖ 1 = 1 for all j = 1 , . . . , r l−1 , for any l. This expresses that

he coefficients of the linear combination of basis vectors corre- 

ponding to each data point sum to 1, hence can be interpreted as 

roportions; see e.g., [27] . 

.2. Sparse deep MF 

Sparse matrix factorizations consist in enforcing some factors of 

he decomposition to be sparse to foster their interpretability. Nu- 

erous ways of tackling sparsity in MFs have been proposed in the 

iterature, including targeting a row-wise (or column-wise) l 1 norm 

or some factors [28] , adding a l 1 and/or l 2 norm penalty [29] to

he loss function, dictionary learning [30] and sparse component 

nalysis [31] , among others. 

Recently, an efficient and fast method, referred to as grouped 

parse projection (GSP) [32] , was developed to avoid the drawback 

f the methods mentioned beforehand, that is, the tuning of many 

arameters. Especially in the context of deep MF, where the num- 

er of factors to update grows linearly with the number of layers, 

t may be convenient to limit the number of parameters. Hence, 

or a given factor, GSP aims to reach a target average sparsity of 

he whole matrix instead of each row/column separately, which 

onfers much more flexibility to the sparsity pattern compared to 

tandard approaches. 

In Algorithm, it suffices to consider at line the grouped sparse 

rojection given in Algorithm 1 of [32] . However, the feasible set of 

SP is not convex, hence the convergence is not guaranteed when 

sing the FPGM. 

.3. Minimum-volume deep NMF 

Minimum-volume one-layer NMF (minVolNMF) is a well-known 

MF variant [33–35] that encourages the basis vectors, that is, 

he columns of W , to have a small volume. Intuitively, this boils 

own to trying to make them as close as possible to the data 

oints, which enhances the interpretability of the decomposition. 

he minVolNMF model on which we will focus adds a penalty 

erm for the volume to the reconstruction error in the loss func- 

ion and is expressed as: 

min 

 ∈ R m ×r 
+ , W 

T e = e 
H∈ R r×n 

+ 

1 

2 

(‖ X − W H‖ 

2 
F + κ log det (W 

T W + δI) 
)

(9) 

here κ and δ are parameters fixed by the user, and e is the col- 

mn vector of all ones. It is important to note that, while many 

odels consider the intuitive constraint H 

T e = e , more recent ap- 

roaches showed that imposing the column-stochasticity of W , 

hat is, W 

T e = e , instead of H leads to better results in many ap-

lications. This is due to the better conditioning of W in this case, 

ee the discussion in Section 4.3.3 of [6] for more details. 

To the best of our knowledge, minVolNMF has not been ex- 

ended to the deep context yet. We extend the approach of [35] by 

ncorporating a volume contribution at every layer to (3) and (4) . 

ence, we add the following quantity to each term of both loss 

unctions: for l = 1 , 2 , . . . , L , 

l log det (W 

T 
l W l + δI r l ) (10) 

hile imposing column-stochasticity on every W l . To solve the 

inVolNMF problem, a majorization-minimization (MM) frame- 

ork is usually considered. This consists in minimizing a surro- 

ate function, namely a strongly convex upper approximation of 

he loss function, see [35] and [36] for the details. The FPGM of 

lgorithm can then be applied on this surrogate. 

The volume contribution implies an additional term in the gra- 

ients of both L and L w.r.t. W ’s. More precisely, the term κ W Z,
1 2 l l l 
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ultiplied either by λl−1 or μl−1 is added to (5) and (7) respec- 

ively, with Z = (W 

(∗) T 
l 

W 

(∗) 
l 

+ δI r l ) 
−1 where W 

(∗) 
l 

denotes the last

teration of W l such that Z is constant during a given update of W l .

A potential drawback of such an approach is the use of many 

egularization parameters, both for the weights of the linear com- 

ination of errors and the volume penalties at each layer. In- 

eed, in addition to the L − 1 parameters λl ’s of (3) or μl ’s 

f (4) , the user has to fix the values of the L parameters κl ’s

nvolved in the volume regularization at each layer. In practice, 

he κl for a given layer is set as follows. Given the initial er- 

or er r (0) 
l 

= 

1 
2 ‖ W 

(0) 
l−1 

− W 

(0) 
l 

H 

(0) 
l 

‖ 2 
F 

(for the layer-centric loss func-

ion (3) ) or er r (0) 
l 

= 

1 
2 ‖ X − W 

(0) 
l 

˜ H 

(0) 
l 

‖ 2 
F 

(for the data-centric loss

unction (4) ) and a first guess ˜ κl , the final value κl is given by

l = ˜ κl 

er r 
(0) 
l 

| log det (W 

(0) T 

l 
W 

(0) 
l 

+ δI r l 
) | 

, such that the decomposition error and 

he volume term are of the same order of magnitude for a given 

ayer. 

. Numerical experiments 

In this section, we evaluate the models described in 

ection 4 on both synthetic ( Section 5.1 ) and real ( Section 5.2 )

ata. One drawback of the experiments carried on deep MF 

odels is the lack of ground truth in datasets. Indeed, despite 

he hierarchical structure of many datasets, few of them have 

vailable ground truth at each layer. Moreover, it is generally 

ard to guess in advance how features of a given layer can be 

nterpreted, especially when various constraints are applied on the 

actors. Even with synthetic data, the setting should be chosen 

arefully to guarantee easy interpretability of the factors. For these 

easons, we first present the results of our models on a simple yet 

eaningful toy example in dimension m = 3 . The low dimension- 

lity offers the advantage to control the ground truth basis vectors 

nd easily interpret the features at each layer. We then study the 

erformance of our models for hyperspectral unmixing and the 

xtraction of facial features to show their efficiency on real-world 

hallenges. 

A Matlab implementation of the framework described above, 

ith all the experiments, is available on https://bit.ly/flexDeepMF . 

.1. Synthetic data 

We consider for all the experiments a 2-layers network (that is, 

 = 2 ) in dimension m = 3 . The ranks r l ’s are set to r 1 = 6 , r 2 = 3 ,
Fig. 1. Setting of the synthetic data considere

5 
nd the target basis matrices W 

∗
1 and W 

∗
2 are given by 

 

∗
1 = 

( 

0 . 1 0 . 1 0 . 4 0 . 4 0 . 5 0 . 5 

0 . 4 0 . 5 0 . 1 0 . 5 0 . 1 0 . 4 

0 . 5 0 . 4 0 . 5 0 . 1 0 . 4 0 . 1 

) 

= W 

∗
2 H 

∗
2 , 

here W 

∗
2 

= 

( 

1 / 2 0 1 / 2 

0 1 / 2 1 / 2 

1 / 2 1 / 2 0 

) 

and H 

∗
2 

= 

 

0 . 2 0 0 . 8 0 0 . 8 0 . 2 

0 . 8 0 . 8 0 . 2 0 . 2 0 0 

0 0 . 2 0 0 . 8 0 . 2 0 . 8 

) 

. 

Each column of the matrix H 

∗
1 

is generated according to 

 Dirichlet distribution of parameter α = 0 . 05 . The data ma- 

rix X , made of n = 10 0 0 points, is therefore generated as X =
 

∗ + N where X ∗ = W 

∗
1 

H 

∗
1 

and N is additive Gaussian noise: N =
‖ X ∗‖ F Y 

‖ Y ‖ F with Y ∼ N (0 , 1) . 

An example of a data set generated in that way in the noiseless 

ase ( ε = 0 ) is presented on Fig. 1 , with the ground truth basis vec-

ors at both layers. In the following, we consider 10 levels of noise: 

= 10 −2 , 2 . 51 10 −2 , 6 . 31 10 −2 , 9 . 49 10 −2 , 1 . 267 10 −1 , 1 . 585 10 −1 ,

 . 384 10 −1 , 3 . 182 10 −1 , 3 . 981 10 −1 , 1. 

We compare five models, namely: 

• Single-layer NMF of ranks r l , l = 2 , . . . , L , 
• The sequential multilayer MF of [18] , as described in 

Algorithm 1 , dubbed MMF. At the first layer, the solution of 

single-layer NMF corresponds to the one of MMF, by construc- 

tion. 
• The deep MF model from [19] , see Algorithm 2 , dubbed Tri- 

DMF. Although the updates of the original paper are performed 

with multiplicative updates (MU), we decided to solve the sub- 

problems at lines and with FPGM since MU are known to be 

slow. 
• Deep MF with the layer-centric loss function (3) solved with 

Algorithms 3 and , dubbed LC-DMF, 
• Deep MF with the data-centric loss function (4) solved with Al- 

gorithms 3 and , dubbed DC-DMF. 

The global loss functions of these methods are not meaningfully 

omparable to each other due to, on the one hand, the absence 

f global loss function for multilayer MF and, on the other hand, 

he difference of magnitude between the terms of layer-centric 

nd data-centric loss functions (see Section 3 ). Therefore, we re- 

ort the average mean-removed spectral angle (MRSA) between 

he corresponding expected and computed basis vectors, that is, 

he columns of W 

∗
l 

and W l respectively at each layer l. Given any 
d in this section, in the noiseless case. 

https://bit.ly/flexDeepMF
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Fig. 2. Comparison of the MRSA obtained at the first layer with minVol MMF, LC-DMF, DC-DMF and Tri-DMF on synthetic data in function of the noise level. 

Fig. 3. Comparison of the MRSA obtained at the second layer with minVol MMF, LC-DMF, DC-DMF, Tri-DMF and single-layer NMF on synthetic data in function of the noise 

level. 
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wo vectors a and b, their MRSA is defined as 

RSA (a, b) = 

100 

π
arcos 

( 〈 a − a , b − b 〉 
‖ a − a ‖ 2 ‖ b − b ‖ 2 

)
∈ [ 0 , 100 ] 

here 〈·, ·〉 indicates the scalar product of two vectors and · is the 

ean of a vector. 

For all methods, the initial factors W 

(0) 
l 

and H 

(0) 
l 

are obtained 

y projecting onto the feasible sets the output of the succes- 

ive nonnegative projection algorithm (SNPA) [37] applied on W 

(0) 
l−1 

, 

ith W 

(0) 
0 

= W 0 = X . In a nutshell, SNPA is a column subset selec-

ion algorithm often used as an initialization technique for NMF. 

emark 1 (Compared algorithms and goal of our experi- 

ents) . Our main goal in this paper is to show that our new pro-

osed loss functions, (3) and (4) , are much more meaningful and 

ead to significantly better results in practice than the most widely 

sed one, namely, that of Trigeorgis et al. [19] , that is, Tri-DMF. In

act, to the best of our knowledge, most papers on deep MF rely 

n Tri-DMF. Their novelty is typically embedded into the regular- 

zers and/or constraints added into their model to tackle specific 

pplications: for example, a total variation regularizer for hyper- 

pectral unmixing in [7] , a regularizer to enhance good local char- 

cteristics for basis image extraction in [9] , or a so-called commu- 

ity regularization for recommendation in social networks in [11] . 

e do not compare to such more recent deep MF models be- 

ause, to have a meaningful and fair comparison, we would need 

o adapt our model as well, adding proper regularizers. Moreover, 
6 
e would need to provide background on each particular appli- 

ation, which is out of the scope of this paper. In summary, be- 

ause our main goal is to provide theoretical and experimental ev- 

dence of the superiority of our proposed models, and the failure 

f the model of Trigeorgis et al. [19] , we do not to focus on par-

icular models designed for specific applications and try to be as 

eneric as possible. The regularizations and constraints we con- 

ider in this paper are very general and apply to a wide range of 

pplications. 

MinVol deep NMF We first consider the minVol deep NMF vari- 

nt (minVol regularization together with non-negativity of the 

actors). The parameter δ is fixed to δ = 0 . 1 . For the ˜ κl ’s (see

ection 4.3 ), we make a distinction between the first 4 levels of 

oise ( ε < 0 . 1 ) and the last 6 ( ε > 0 . 1 ), since minimizing the vol-

me is more challenging when the noise increases. More precisely, 

e fix ˜ κ1 = 10 −3 , ˜ κ2 = 10 −2 for the four first levels and ˜ κ1 = 10 −2 ,

˜ 2 = 10 −1 for the six last levels of noise, for all the compared 

ethods. To compute the parameters λl ’s, l = 1 , . . . , L − 1 in (3) ,

e proceed similarly to what is done for the minVol parame- 

ers κl ’s, by always considering the first layer of decomposition 

s a baseline. More precisely, based on an initial guess ˜ λl , we set 

l = ̃

 λl 
er r 

(0) 
1 

er r 
(0) 
l+1 

, where er r (0) 
k 

denotes the k -th layer error 1 
2 ‖ W k −1 −

 k H k ‖ 2 F 
after the initialization. By doing so, the ratio between the 

l + 1) -th and the first term of (3) is approximately equal to an

rbitrary value ˜ λ , fixed by the user. In practice, we used 

˜ λ = 10 
l l 
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Fig. 4. Comparison of the MRSA obtained at the first layer with grouped sparse MMF, LC-DMF, DC-DMF and Tri-DMF on synthetic data in function of the noise level. 

Fig. 5. Comparison of the MRSA obtained at the second layer with grouped sparse MMF, LC-DMF, DC-DMF, Tri-DMF and single-layer NMF on synthetic data in function of 

the noise level. 
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Fig. 6. Urban hyperspectral image and its four main materials. 
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or all l = 1 , . . . , L − 1 . For the parameters μl ’s of the data-centric

oss function, we fixed μl = 1 for all l = 1 , . . . , L − 1 since all the

econstruction error terms are expected to be of the same order 

f magnitude. We use the same values of these parameters for the 

xperiments on real data in Section 5.2 . 

Fig. 2 and 3 display the MRSA (average and standard devia- 

ion over 25 runs) of MMF, LC-DMF, DC-DMF, Tri-DMF and single- 

ayer NMF (for the second layer only) in function of the noise level 

or the first and second layers, respectively. For both layers, LC- 

MF produces the lowest MRSA, except for very high noise lev- 

ls. DC-DMF becomes more competitive as the noise increases. 

n the contrary, especially at the second layer, MMF produces 

 higher MRSA than DC-DMF and LC-DMF. This confirms that a 

eighted loss function together with an iterative framework such 

s Algorithm 3 is more efficient than the purely sequential ap- 

roach of Cichocki et al. On the other side, the approach of Trigeor- 

is et al. completely fails to retrieve the correct basis vectors at the 

rst layer, with one or two predicted basis vectors located inside 

he convex hull of the others. Even at the second layer, Tri-DMF 

s not the best method although the corresponding loss function 

s designed to minimize the reconstruction error at the last layer. 

inally, single-layer NMF also performs worse than LC-DMF at the 

econd layer and, of course, does not allow to automatically bind 

he features of consecutive layers, which is undoubtedly the main 

dded value of deep approaches. 

Sparse deep MF Let us now investigate sparse deep MF. Due to 

he structure of the ground truth factors, we only considered spar- 

ity on the factors of the second layer, fixing the target grouped 
7 
parsity of both W 2 and H 2 to 1 
3 . The values of the parameters λl ’s

nd μl ’s are chosen in the same way as for the minVol variant. 

Figs. 4 and 5 display the MRSA of MMF, LC-DMF, DC-DMF, Tri- 

MF and single-layer NMF in function of the noise level for the 

rst and second layers, respectively. The conclusions are similar 

o those of minVol deep MF: LC-DMF performs better in terms 
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Fig. 7. Endmembers extracted by MMF, LC-DMF, DC-DMF and Tri-DMF in the Urban image at the first layer ( r 1 = 6 ), and the ground truth. 

Fig. 8. Endmembers extracted by MMF, LC-DMF, DC-DMF, Tri-DMF and single-layer NMF in the Urban image at the second layer ( r 2 = 4 ), and the ground truth. 
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f MRSA than DC-DMF and MMF, and Tri-DMF completely fails to 

ecover the basis vectors at the first layer. Moreover, at the sec- 

nd layer, single-layer NMF performs worse than weighted deep 

pproaches such as LC-DMF and DC-DMF. This tends to confirm 

hat LC-DMF is the most effective to recover the ground truth 

actors. 

.2. Real data 

In this section, we present the performance of our framework 

n real data, namely hyperspectral images in Section 5.2.1 and 

aces in Section 5.2.2 . 

.2.1. Hyperspectral unmixing 

A hyperspectral image (HI) is characterized by the reflectance 

alues of n pixels in m wavelength spectral bands and is gener- 

lly represented by a matrix X ∈ R 

m ×n where each column of X is 

he spectral signature of one pixel. Hyperspectral unmixing (HU) 

ims to identify the spectral signatures of r materials and under 

he linear mixing assumption, NMF has been widely used to solve 

U [38] . When deep NMF is applied, the materials are extracted in 

 hierarchical manner [39,40] . 

We apply minVol deep NMF on the HYDICE Urban HI, which is 

ade of n = 307 × 307 pixels in m = 162 spectral bands [41] ; see

ig. 6 . 

We consider a 3-layers network, with r 1 = 6 , r 2 = 4 and r 3 = 2 .

o initialize the basis vectors of all layers, we use hierarchical clus- 

ering (HC) [42] instead of SNPA. Indeed, SNPA is designed to ex- 

ract extreme points of the dataset which may not be the most 
8 
ppropriate for the noisy, high-dimensional hyperspectral data. On 

he other hand, HC extracts clusters centroids. After several trials, 

t turns out that appropriate values for the minVol hyperparame- 

ers ˜ κl ’s are 10 −2 for all l. 

As the hyperspectral data are high-dimensional and tough to 

nmix, instead of simply initializing the factors of LC-DMF, DC- 

MF and Tri-DMF with HC, we perform a few iterations of BCD 

fter running HC at each layer, similarly to MMF (see Algorithm 1 ), 

efore moving to the initialization of the next layer. After this 

augmented” initialization, the framework of Algorithm 3 is ap- 

lied. More precisely, we run the same number it = 500 iterations 

f MMF, LC-DMF, DC-DMF and Tri-DMF, among which, for the last 

hree methods, it in = 50 iterations are devoted to improve the ini- 

ial factors of all layers and the remaining consist in the iterative 

pdates of Algorithm 3 . We also run single-layer NMF for r = 4 and

 = 2 (at the first layer, it coïncides with MMF) to evaluate the ef-

ciency of deep approaches compared to a shallow one. 

On Fig. 7 and 8 , we plot the spectral signatures of the materials

xtracted by the pre-cited methods at the first and second layer re- 

pectively, that is, the columns of W 1 and W 2 , and the ground truth 

rom [41] , which is only available for r = 6 and r = 4 to the best of

ur knowledge. The MRSA’s at both layers are presented in Table 2 . 

t both layers, LC-DMF outperforms the other deep methods, in- 

luding Tri-DMF and MMF. Moreover, at the second layer, LC-DMF 

chieves a MRSA very close to the one of single-layer NMF. There- 

ore, as for the synthetic data, LC-DMF seems to be the best loss 

unction to minimize when tackling deep MF. 

In Appendix A , we present the abundance maps indicating 

he proportion of every material in each pixel at each layer, ex- 
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Fig. 9. Features extracted by MMF on the CBCL face data set, with L = 3 , r 1 = 100 , r 2 = 49 , and r 3 = 25 . Each image contains the features extracted at a layer: (a) first layer 

W 1 , (b) second layer W 2 , and (c) third layer W 3 . 

Fig. 10. Layer-centric relative errors on the CBCL face data set, with L = 3 , r 1 = 100 , r 2 = 49 and r 3 = 25 at the (a) first, (b) second, and (c) third layer. 

9 
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Fig. 11. Data-centric relative errors on the CBCL face data set, with L = 3 , r 1 = 100 , r 2 = 49 and r 3 = 25 at the (a) first, (b) second, and (c) third layer. 

Table 2 

MRSA of the compared methods at the first and second layer on the 

Urban hyperspectral image, with in bold the best value of each col- 

umn. 

Method First layer ( r 1 = 6 ) Second layer ( r 2 = 4 ) 

MMF 16.98 12.35 

LC-DMF 9 . 48 8.42 

DC-DMF 22.95 14.15 

Tri-DMF 26.07 20.07 

Single-layer NMF 16.98 7 . 74 
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1 http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz 
racted by MMF, LC-DMF, DC-DMF, Tri-DMF and single-layer NMF 

n Figs. A1 , A2 , A3 , A4 , A5 and A6 respectively. In general, the six

aterials extracted at the first layer are asphalt road, grass, tree, 

wo types of roof tops, and soil. Finally, at the last layer, two main

ategories of materials remain: on the one hand, grass and trees 

re mainly merged in a single ”vegetal” cluster while on the other 

and, the other materials are combined in a second ”non-vegetal”
10 
luster. On the figures, the arrows between materials extracted at 

onsecutive layers indicate which materials of a given layer con- 

ribute to those of the next layer (that is, the arrows represent the 

on-zero entries of the corresponding H l ). When a material of the 

pper layer contributes to less than 10% to a material of the lower 

ayer, the arrow is discarded. We observe that the hierarchy of ma- 

erials extracted by LC-DMF is rather sparse, as each material is 

btained by a combination of only a few materials of the previous 

ayer. On the opposite, the decomposition of Tri-DMF is hardly in- 

erpretable since all materials contribute almost equally to those of 

he next layer. 

.2.2. Facial features extraction 

Deep MF has also been shown efficient to extract facial features 

ierarchically [18,19] . The CBCL image 1 is made of 2429 grey-scale 

http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz
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mages of 19 × 19 pixels representing faces of different people ex- 

ibiting various expressions. 

For this application, we consider grouped sparsity constraints 

n the factors. We set L = 3 , r 1 = 100 , r 2 = 49 and r 3 = 25 , and

erform the initialisation of the factors with SNPA. We run MMF, 

C-DMF, DC-DMF and Tri-DMF with a grouped sparsity level, that 

s, the average Hoyer sparsity of the columns, of 70% on W 1 , 80%

n W 2 and 85% on W 3 . Given any column vector x , its Hoyer spar-

ity [28] is defined as sp(x ) = 

√ 

n − ‖ x ‖ 1 ‖ x ‖ 2 √ 

n −1 
. In comparison, the aver- 

ge Hoyer sparsity of W 1 , W 2 and W 3 obtained with MMF with- 

ut sparsity constraints are respectively 71 . 97% , 79 . 46% and 76 . 64% .

he features extracted at all layers by MMF are displayed on Fig. 9 .

t shows the hierarchical decomposition of the data set by MMF: 

he larger facial features extracted at the first levels are made of 

maller ones extracted at the deeper levels, such as eyes, mouths, 

nd eyebrows. Sparsity allows the features, especially at the last 

ayer, to contain only a few activated pixels. The features ex- 

racted by the other methods, that is, LC-DMF, DC-DMF, Tri-DMF 

nd single-layer NMF are displayed in Appendix B on Figs. B1 , B2 ,

3 and B4 , respectively. 

To compare quantitatively these methods, we plot the evolu- 

ion of several loss functions along the 500 iterations. More pre- 

isely, Fig. 10 shows the relative layer-centric errors 
‖ W l−1 −W l H l ‖ 2 F 

‖ W 

(0) 
l−1 

‖ 2 
F 

or l = 1 , 2 , 3 , with W 0 = X , for all methods. Fig. 11 shows the rela-

ive data-centric errors 
‖ X−W l H l ... H 1 ‖ 2 F 

‖ X‖ 2 
F 

for l = 1 , 2 , 3 . Note that the

rst layer errors are both equal to 
‖ X−W 1 H 1 ‖ 2 F 

‖ X‖ 2 
F 

and appear in all 

lobal loss functions except Tri-DMF. 

This experiment confirms the advantage of DC-DMF and LC- 

MF over MMF and Tri-DMF: 

• At the second and third layers, DC-DMF produces the lowest 

data-centric errors while LC-DMF produces the lowest layer- 

centric errors. Note however that DC-DMF has slightly larger 

errors than single-layer NMF at the first two layers, while it has 

a lower error at the third layer. This is expected since DC-DMF 

optimizes all layers simultaneously while single-layer NMF sim- 

ply performs independent NMFs, that is, DC-DMF provides a hi- 

erarchy of intricated features. 
• MMF has much higher relative errors than LC-DMF at the sec- 

ond and third layers (MMF is above 10 −1 while LC-DMF is be- 

low or about 10 −3 ). This comes from the sequential optimiza- 

tion procedure of MMF. More precisely, the factors of the first 

layer, W 1 and H 1 , are first extracted, then those of the second 

layer, and so on, without any possibility of “backpropagation”, 

see Section 2 for details. 
• The first-layer error of Tri-DMF oscillates and does not converge 

(in fact, it appears to diverge), which is an expected conse- 

quence of the different loss functions minimized at each layer; 

see the discussion of Section 2 for more details. 

. Conclusion 

In this paper, we have discussed the choice of the loss functions 

n deep MF models. Our motivation came from the fact that the 

ainstream framework proposed by Trigeorgis et al. [19] , namely 

he loss function (2) and the corresponding Algorithm 2 , is not 

onsistent as it optimizes different losses at different layers. In 
11 
act, we have shown that this approach leads to poor feature ex- 

raction, and divergence of the loss functions. We have therefore 

roposed two loss functions for deep MF that naturally weighs 

he different layers, namely a layer-centric loss and a data-centric 

oss, see (3) and (4) , along with a simple block coordinate descent 

ramework to compute the factors in the corresponding deep MF 

odels. We focused on nonnegativity and sparsity constraints, and 

roposed a new deep MF model relying on minimum-volume reg- 

larization. We showed through experiments on synthetic and real 

ata that our weighted loss functions allow us to outperform se- 

uential MF, single-layer MF and the mainstream deep MF model 

rom [19] , while offering flexibility when various constraints or 

egularizations are used. In particular, we recommend to use the 

oss function defined in (3) , that is, LC-DMF, to tackle deep MF as it

erformed best on average in our numerical experiments. Besides, 

t is computationally much cheaper than DC-DMF as the dimen- 

ion reduces as the factorization unfolds, while DC-NMF uses the 

ull data set at each layer (see Section 3 for the details). However, 

he best alternative will depend on the application and the data 

et at hand, and it is hard to know in advance which model will 

e the most appropriate. This also depends on the goal of the end 

ser: for example, if the goal is to minimize the error w.r.t. the 

nput data at all layers, then DC-DMF should be preferred. 

An important direction of research is to find clever ways of 

hoosing and tuning the regularization parameters in our proposed 

oss functions. Moreover, other loss functions could be investi- 

ated, as variants of the two proposed ones. An other perspective 

s to embed deep MF in a more powerful optimization framework 

uch as TITAN [43] which has proven to be particularly efficient 

o tackle non-smooth non-convex problems, such as the grouped 

parse variant of deep MF (see Section 4.2 ). Studying the identi- 

ability, that is, the uniqueness of the factors retrieved by these 

odels is also an important issue, which has not been investigated 

uch for deep MF, except for some quite specific settings [44,45] . 

inally, applying the different models on other applications, such 

s topic modeling, would also be insightful. 
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ppendix A. Abundance maps of the Urban hyperspectral 

mage 

Figs. A1 - A6 provide the abundance maps obtained with MMF, 

C-DMF, DC-DMF, Tri-DMF and single-layer NMF applied on the 

rban image for factorizations of depth L = 3 , with r 1 = 6 , r 2 = 4 ,

 3 = 2 (see Section 5.2.1 ). 
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Fig. A1. Hierarchy of features extracted by MMF on the Urban hyperspectral image with L = 3 layers, r 1 = 6 , r 2 = 4 , r 3 = 2 . 

Fig. A2. Hierarchy of features extracted by LC-DMF on the Urban hyperspectral image with L = 3 layers, r 1 = 6 , r 2 = 4 , r 3 = 2 . 

Fig. A3. Hierarchy of features extracted by DC-DMF on the Urban hyperspectral image with L = 3 layers, r 1 = 6 , r 2 = 4 , r 3 = 2 . 

12 
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Fig. A4. Hierarchy of features extracted by Tri-DMF on the Urban hyperspectral image with L = 3 layers, r 1 = 6 , r 2 = 4 , r 3 = 2 . 

Fig. A5. Features extracted by single-layer NMF with r = 4 on the Urban hyperspectral image. 

Fig. A6. Features extracted by single-layer NMF with r = 2 on the Urban hyperspectral image. 

A

-DMF, DC-DMF, Tri-DMF and single-layer NMF with grouped sparsity 

c

F

l

ppendix B. Facial features of the CBCL dataset 

In this section, we present the facial features extracted by LC

onstraints on the CBCL dataset (see Section 5.2.2 ). 
ig. B1. Features extracted by LC-DMF on the CBCL face data set, with L = 3 , r 1 = 100 , r 2 = 49 , and r 3 = 25 . Each image contains the features extracted at a layer: (a) first 

ayer W 1 , (b) second layer W 2 , and (c) third layer W 3 . 

13 
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Fig. B2. Features extracted by DC-DMF on the CBCL face data set, with L = 3 , r 1 = 100 , r 2 = 49 , and r 3 = 25 . Each image contains the features extracted at a layer: (a) first 

layer W 1 , (b) second layer W 2 , and (c) third layer W 3 . 

Fig. B3. Features extracted by Tri-DMF on the CBCL face data set, with L = 3 , r 1 = 100 , r 2 = 49 , and r 3 = 25 . Each image contains the features extracted at a layer: (a) first 

layer W 1 , (b) second layer W 2 , and (c) third layer W 3 . 

Fig. B4. Features extracted by single-layer NMF on the CBCL face data set, with (a) r = 49 (b) r = 25 . 
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